skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DuBose, James_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The diversification of many lineages throughout natural history has frequently been associated with evolutionary changes in life cycle complexity. However, our understanding of the processes that facilitate differentiation in the morphologies and functions expressed by organisms throughout their life cycles is limited. Theory suggests that the expression of traits is decoupled across life stages, thus allowing for their evolutionary independence. Although trait decoupling between stages is well established, explanations of how said decoupling evolves have seldom been considered. Because the different phenotypes expressed by organisms throughout their life cycles are coded for by the same genome, trait decoupling must be mediated through divergence in gene expression between stages. Gene duplication has been identified as an important mechanism that enables divergence in gene function and expression between cells and tissues. Because stage transitions across life cycles require changes in tissue types and functions, we investigated the potential link between gene duplication and expression divergence between life stages. To explore this idea, we examined the temporal changes in gene expression across the monarch butterfly (Danaus plexippus) metamorphosis. We found that within homologous groups, more phylogenetically diverged genes exhibited more distinct temporal expression patterns. This relationship scaled such that more phylogenetically diverse homologous groups showed more diverse patterns of gene expression. Furthermore, we found that duplicate genes showed increased stage-specificity relative to singleton genes. Overall, our findings suggest an important link between gene duplication and the evolution of complex life cycles. 
    more » « less